Selasa, 27 Desember 2011

Trik Perkalian


Trik Perkalian 11
Mungkin perkalian 1 x 11 sampai 9 x 11 sudah kalian hafal.
Karena itu sangat gampang, contoh:
1 x 11 = 11
8 x 11 = 88
9 x 11 = 99
Memang itu gampang, tetapi bagaimana kalau perkalian 10 x 11 sampai 20 x 11?
Caranya:
12 x 11
Tulis angka yang akan dikalikan 11 tapi kosongkan tengahnya!
1_2 (Perhatikan. Di antara 1 dan 2 ada ruang kosong)
Maksud “_” adalah ruang kosong antara 1 dan 2. Jadi bila menulis di buku, gantilah “_” dengan spasi / tempat kosong
Lalu coba jumlahkan kedua angka itu ( 1 + 2).
Hasilnya pasti 3 kan?
Lalu taruh angka 3 di antara kedua angka itu. Lalu itu akan menjadi seperti ini:
Sebelum = 1_2
Sesudah = 132
Tapi apabila perkalian 19 x 11 bagaimana caranya?
Caranya:
Isikan tempat kosong di antara 1 dan 9 (1_9).
Lalu hitung 1 + 9.
Hasilnya pasti 10 kan? Tapi jangan menjawab hasil dari 19 x 11 = 1109!
Tapi caranya begini:
Tulis dahulu di kertas orak-orek angka 10. Lalu masukan angka akhirnya (0) jadinya seperti ini: 109.
Tapi bagaimana dengan angka 1 nya? Caranya tambahkan angka akhir dari 19 (1 nya) dengan angka 1 nya (sisanya).
1 + 1 tentu hasilnya 2 kan? Nah, sekarang kita ganti angka terakhir dari 109 menjadi 2 dan hasilnya menjadi seperti ini:
209. Coba hitung dengan cara menyusun. Hasilnya pasti 209. Gampangkan!

Trik Perkalian 25
Perkalian 25 memang sangat susah
Tapi kalau memakai trik ini, pasti lebih gampang!
Triknya:
<yang akan dikalikan 25> : 4 x 100
Apabila sisanya 0, angka 00nya tetap menjadi 00
Apabila sisanya 1, angka 00nya menjadi 25
Apabila sisanya 2, angka 00nya menjadi 50
Apabila sisanya 3, angka 00nya menjadi 75
Contoh:
25 x 12 = …….
Caranya:
12:4×100 =
3×100 = 300
Karena sisa dari 12 dibagi 4 tidak ada (0), maka 00 tetap menjadi 00
Jadi hasilnya 300!
Coba hitung dengan menyusun, pasti benar
Contoh 2:
25 x 11 =….
Caranya:
11:4×100 =
2 (sisanya 3)x100 = 200
Karena 11 dibagi 4 mempunyai sisa 3, maka angka 00 dari bilangan 200 menjadi 75
Jadi hasilnya 275!
Coba hitung dengan menyusun, pasti benar!!!!

Trik lainnya
Tentu kita dapat menghitungnya dengan cara seperti biasa. Kita juga dapat menyelesaikannya dengan kalkulator. Tetapi apa kreatifnya? Apa asyiknya? Ini lah cara asyiknya!
542 = 2916
29 kita peroleh dari 25 + 4
16 kita peroleh dari 42
562 = 3136
31 kita peroleh dari 25 + 6
36 kita peroleh dari 62
572 = 3249
32 kita peroleh dari 25 + 7
49 kita peroleh dari 72

Cara hitung cepat dengan angka 9


Karena setiap bilangan sembarang jika dikalikan 9 maka jumlah hasilnya = 9
maka :
1 x 9 = 9
2 x 9 = 18, jumlah 1 + 8 = 9
3 x 9 = 27, jumlah 2 + 7 = 9
4 x 9 = 36, jumlah 3 + 6 = 9
dan seterusnya......................

Cara hitung cepat dengan angka 9 :
Contoh : 22 x 9 = 198,
( cara cepatnya 2 x 9 = 18, lalu selipkan angka 9 ditengah ), jadi jumlahnya adalah 198
simak cara cepatnya berikut ini :
33 x 9 = 297 ( cara cepat 3 x 9 = 27, selipkan 9 ditengah )
44 x 9 = 396
55 x 9 = 495
66 x 9 = 594
77 x 9 = 693
88 x 9 = 792
99 x 9 = 891
lalu bagaimana jika dengan 3 angka kembar, selipkan saja angka 99 ditengahnya.
Contoh :
222 x 9 = 1998 (cara cepat 2 x 9= 18, selipkan 99 ditengah )
333 x 9 = 2997
444 x 9 = 3996
555 x 9 = 4995

Minggu, 25 Desember 2011

Rumus Cepat Matematika (Aljabar) Menjadi Idaman



Anak-anak sangat menyukai matematika. Mereka minta terus dikasih soal. Saya sendiri heran, mengapa mereka begitu semangat?
“Lagi Pak. Kasih soal lagi Pak!” anak-anak menantang saya.
“306 x 303 = …” saya keluarkan soal.
“Sembilan…dua tujuh…delapan belas!” jawab mereka ramai-ramai.
“Maksudnya berapa?”
“92718”
“Betul!”

Anak-anak yang terdiri dari kelas 3 sampai kelas 5 SD itu senang menemukan cara berhitung cepat perkalian ratusan kali ratusan. Bagi mereka itu adalah rumus cepat matematika yang diidam-idamkan. Anak-anak SMA yang menjelang UN, SPMB, dan UMPTN 2008 juga tidak kalah semangat. Jika mereka memperoleh rumus matematika cepat untuk UN, SPMB, dan UMPTN maka matanya langsung berbinar-binar. Wajahnya berseri-seri.

Saya sering mengatakan kepada mereka,
”Maukah kalian dapat soal bonus?”
”Apa itu soal bonus?”
”Soal UN, SPMB, atau UMPTN yang selalu dapat kamu selesaikan dengan mudah.”
”Ya maulah…”
”Limit.”
Limit kan sangat abstrak dan sulit? Bagaimana bisa dikatakan sebagai bonus? Itulah intinya. Limit adalah ide fundamental dalam kalkulus. Karena limit sangat kaya akan variasi dan abstrak bagi orang awam, maka limit hanya diperkenalkan bagian dasar saja untuk anak tingkat SMA. Jadi limit tingkat SMA tentu yang mudah-mudah saja. Limit adalah bonus. Rumus cepat adalah terhormat.

Bagaimana jika terjadi komersialisasi rumus cepat? Saya tidak tahu jawabannya. O iya, saya jadi ingat dengan berhitung cepat yang paling awal tadi bagaimana caranya?

Sekedar contoh rumus cepat untuk limit. Kadang orang menyebut rumus cepat sebagai trik cepat, fastest solution, king of fastest, atau rumus sesat. Boleh-boleh saja. Soal berikut ini sangat mudah. Sudah pernah diujikan untuk tes masuk ITB sejak tahun 70-an. Tetapi entah mengapa, soal limit tipe ini tetap sering diujikan sampai sekarang. Benar-benar bonus untuk kita.

Untuk limit x menuju 0 hitunglah
(tg5x)/(sin3x) = …

Bagi orang awam jawabannya sangat mudah yaitu 5/3.
Apakah Anda yakin itu jawaban yang benar?
Banyak anak-anak karena ragu, karena dirasa terlalu mudah, malah tidak mau menjawab dengan 5/3.

Mari kita diskusikan!
Untuk membahasnya kita perlu ke dasar-dasar limit trigonometri. Sudah banyak dibuktikan dalam buku-buku bahwa untuk limit x menuju 0 berlaku:

(sinx)/x = 1;
(tgx)/x = 1;

Biasanya anak-anak harus hafal rumus di atas. Bagi saya rumus ini adalah rumus cepat limit. Tetapi rumus ini beruntung. Ia tidak pernah disebut sebagai rumus sesat. Ia mendapat gelar kehormatan sebagai rumus dasar limit trigonometri. Dengan rumus dasar limit trigonometri ini kita akan memecahkan

(tg5x)/(sin3x) =
[(tg5x)(5x/5x)]/[(sin3x)(3x/3x)] =
[(tga)(a/a)]/[(sinb)(b/b)]
dengan a = 5x dan b = 3x;
gunakan rumus dasar trigonometri:
[1.a]/[1.b] =
[5x]/[3x] =
= 5/3 (Selesai)
Kita peroleh jawaban 5/3 sesuai tebakan awal kita.

Apakah kita selalu boleh melakukan tebakan semacam itu? Boleh. Tebakan ini sah. Kita mendasarkan pada rumus dasar limit trigonometri dengan menambah satu langkah implikasi.
Karena (sinx)/x = 1 maka (sinx) = x;
karena (tgx)/x = 1 maka (tgx) = x.
Jadi rumus dasar trigonometri yang kita hafal adalah
sinx = x;
tgx = x.

Dengan sedikit mengubah cara pandang ini akan membawa keberuntungan besar pada UN, SPMB, UMPTN 2008. Siswa-siswa SMA, mestinya tidak asing dengan cara pandang ini. Kita telah memakai cara pandang ini ketika menghitung interferensi gelombang Young dalam fenomena fisika.

Jadi bila kita terapkan ke soal di atas:
(tg5x)/(sin3x) = 5x/3x = 5/3 (Selesai).

Rumus cepat di atas akan semakin bernilai bila bentuk soalnya semakin rumit seperti
(2x + tg3x)/(x + sin7x) =…
(2x + 3x)/(x + 7x) = 5/8 (Selesai).

Rumus cepat matematika bukan hal baru. Dalam sejarah matematika tercatat bahwa masyarakat memang mengidolakan rumus-rumus cepat matematika. Saat itu rumus-rumus cepat tidak dipandang sebagai rumus sesat. Pun yang menguasai rumus-rumus cepat adalah para ahli matematika itu sendiri.

Pada tahun 1535 Tartagtila mengikuti pertandingan berhitung cepat. Ia melawan murid dari seorang profesor matematika ternama. Tartagtila tidak begitu dikenal di dunia matematika waktu itu. Ia mempelajari matematika nyaris secara mandiri. Tetapi Tartagtila memiliki keistimewaan: ia memiliki rumus cepat untuk memecahkan persamaan polinom pangkat 3.

Aturan pertandingan itu sederhana. Masing-masing peserta menuliskan 30 soal matematika. Kemudian soal itu diserahkan kepada lawan untuk diselesaikan. Siapa saja yang mampu menyelesaikan soal lebih awal dan benar maka ia sebagai pemenang. Setelah 2 jam pertandingan berlangsung. Tartagtila berhasil menyelesaikan seluruh 30 soal yang dihadapinya. Sedangkan lawannya belum mampu menyelesaikan soal satu pun. Tartagtila mampu menyelesaikannya karena menggunakan rumus cepat. Sedangkan lawannya tidak memiliki rumus cepat. Tartagtila meraih berbagai kehormatan setelah pertandingan itu.
Bagaimana seorang anak kecil dapat menghitung 306 x 303 luar kepala? Caranya mudah!
Bagi anak SMP sudah mengenal bahwa
(x+2)(x+3)=
x.x + (2x+3x) + 2.3 =

Mirip dengan itu caranya:
306 x 303 =
9 (dari 3×3)
27 (dari 6×3 + 3×3)
18 (dari 6×3)
Kita peroleh jawaban 92718.

Contoh lain
207 x 304 = …
6 (dari 2×3)
29 (dari 7×3 + 2×4)
28 (dari 7×4)
Kita peroleh 62928.

CARA MENGUASAI RUMUS CEPAT MATEMATIKA


Bagaimana cara belajar matematika yang benar?”

“Belajar matematika adalah belajar hidup. Matematika adalah jalan hidup.”
Trachtenberg mempertaruhkan jiwanya menentang Hitler. Trachtenberg, setelah menyelami prinsip-prinsip matematika, menyimpulkan bahwa prinsip kehidupan adalah keharmonisan. Peperangan yang terus berkobar, menyulut kebencian tidak sesuai dengan prinsip-prinsip matematika. Matematika adalah keindahan.

Atas penentangannya ini, Hitler menghadiahi Trachtenberg hukuman penjara. Bagi Trachtenberg, perjara bukan apa-apa. Di dalam penjara, dia justru memiliki kesempatan memikirkan matematika tanpa banyak gangguan. Karena sulit mendapatkan alat tulis-menulis, Trachtenberg mengembangkan pendekatan matematika yang berbasis mental-imajinasi.
Seribu tahun sebelum itu, AlKhawaritzmi mengembangkan disiplin matematika baru: aljabar. AlKharitzmi beruntung hidup dalam lingkungan agama Islam yang kuat. Ajaran Islam, secara inheren, menuntut keterampilan matematika tingkat tinggi. Misalnya, Islam menetapkan aturan pembagian waris yang detil. Pembagian waris sistem Islam melibatkan banyak variabel matematis. Variabel-variabel yang beragam ini menantang penganut Islam – termasuk AlKhawaritzmi – untuk mencari pemecahan yang elegan.

Pemecahan terhadap sistem persamaan yang melibatkan banyak variabel ini membawa ke arah disiplin baru matematika: aljabar. AlKhawaritzmi menulis buku khusus tentang aljabar yang sangat fenomenal. Buku yang berjudul Aljabar ini menjadi panutan bagi matematikawan seluruh dunia. Sehingga nama AlKhawaritzmi menjadi dikenal sebagai Aljabar AlKhawaritzmi (Algebra Algorithm).

Sistem kalender Islam yang berbasis pada komariah (bulan, lunar) memberikan tantangan tersendiri. Penetapan awal bulan menjadi krusial di dalam Islam. Berbeda dengan kalender syamsiah (matahari, solar). Dalam kalender syamsiah, kita tidak begitu sensitif apa berbedaan tanggal 1 Juni dengan 2 Juni. Tetapi pada sistem komariah, perbedaan 1 Ramadhan denga 2 Ramadhan berdampak besar.

Itulah sebabnya, astronomi Islam dapat maju lebih awal. Astronomi memicu lebih berkembangnya teori trigonometri. Aturan sinus, cosinus, dan kawan-kawan berkembang pesat di tangan para astronom Islam waktu itu.

Ajaran agama Islam adalah jalan hidup. Untuk bisa melaksanakan ajaran Islam diperlukan matematika. Matematika menjadi jalan hidup.
Sehebat itukah peran matematika?

Haruskah kita mengambil matematika sebagai jalan hidup?
Tidak selalu! Tidak semua orang perlu mengambil matematika sebagai jalan hidup. Tidak harus semua orang meniru AlKhawaritzmi dan Trachtenberg.

Beberapa orang belajar matematika hanya untuk kesenangan. Beberapa orang yang lain belajar karena kewajiban. Ada pula yang belajar matematika agar naik jabatan. Ada juga agar lulus UN, SPMB, UMPTN. Ada juga untuk menjadi juara.
Masing-masing tujuan, berimplikasi kepada cara belajar matematika yang berbeda. Misalnya bila Anda belajar matematika untuk kepentingan lulus UN, SPMB, UMPTN 2008 akan berbeda dengan belajar untuk memenangkan olimpiade matematika.
Matematika UN, SPMB, UMPTN 2008 hanya menerapkan soal pilihan ganda. Implikasinya Anda hanya dinilai dari jawaban akhir Anda. Proses Anda menemukan jawaban itu tidak penting. Jadi Anda harus memilih siasat yang cepat dan tepat.
Gunakan berbagai macam rumus cepat dalam matematika. Rumus cepat ampuh Anda gunakan untuk UN, SPMB, UMPTN. Tetapi rumus cepat matematika tidak akan berguna untuk olimpiade atau kuliah kalkulus kelak di perguruan tinggi. Anda harus sadar itu.
Contoh rumus cepat matematika yang sering (hampir selalu) berguna ketika UN, SPMB, UMPTN adalah rumus tentang deret aritmetika.

Contoh soal:
Jumlah n suku pertama dari suatu deret adalah Sn = 3n^2 + n. Maka suku ke-11 dari deret tersebut adalah…
Tentu ada banyak cara untuk menyelesaikan soal ini.

Cara pertama, tentukan dulu rumus Un kemudian hitung U11. Cara ini cukup panjang. Tetapi bagus Anda coba untuk meningkatkan keterampilan dan pemahaman konsep deret. Rumus Un dapat kita peroleh dari selisih Sn – S(n-1) .

Cara kedua, sedikit lebih cerdik dari cara pertama. Kita tidak perlu menentukan rumus Un. Karena kita memang tidak ditanya rumus tersebut. Kita langsung menghitung U11 dengan cara menghitung selisih
S11 – S10 = U11
[3(11^2) + 11] – [3(10^2) + 10]
= 3.121 – 3.100 + 11 – 10
= 3.21 + 1
= 64

Cara ketiga, adalah rumus matematika paling cepat dari kedua rumus di atas. Tetapi sebelum menerapkan cara ketiga, kita harus memahami konsepnya terlebih dahulu dengan baik.
Bentuk baku dari n suku pertama deret aritmetika adalah
Sn = (b/2)n^2 + k.n
Un = b(n-1) + a
a = S1 = U1

Anda harus pahami konsep di atas dengan baik. Cobalah untuk beberapa soal yang berbeda-beda. Tanpa pemahaman konsep yang baik, rumus cepat ini akan berubah menjadi rumus berat.
Dengan hanya melihat soal (tanpa menghitung di kertas) bahwa
Sn = 3n^2 + n
Kita peroleh
b = 6 (dari 3 x 2)
a = 4 (dari S1 = 3 + 1)
U11 = 6.10 + 4 = 64 (Selesai)
Semua perhitungan di atas dapat kita lakukan tanpa menggunakan alat tulis. Semua kita lakukan hanya dalam imajinasi kita. Ulangi beberapa kali. Anda pasti akan menguasainya dengan baik.

Trik untuk menguasai rumus cepat matematika adalah kuasai pula rumus standarnya – rumus biasanya. Dengan menguasai dua cara ini Anda akan semakin terampil menggunakan rumus 

Rabu, 21 Desember 2011

BARISAN DAN DERET


Pengertian
1.   Barisan adalah suatu rangkaian bilangan yang tersusun menurut aturan atau pola tertentu.
Bentuk umum pada barisan :

U, u2,u3,…. un
U1 = suku yang pertama
U2 = suku yang kedua
U3 = suku yang ketiga
Un = suku yang ke-n

2.  Deret
Bentuk umum pada deret:
Sn = u1 + u2 + u3 + ……. + un
Sn = Jumlah n suku yang pertama
B  = Beda
Contoh soal:
Diketahui deret 2 + 4 + 6 + …..
Hitunglah jumlah lima suku yang pertama !
jawab :
b = u2 - u1 = 4 - 2 = 2
s5 = 1+ 2 + 4 + 6 + 8 = 21

1.      Barisan Aritmatika

Bentuk umum:
U1, U2, U3,………. Un
Rumus:
beda -> b = Un - Un-1
suku ke-n barisan aritmatika:
Un = a+(n-1)b
Un = Suku ke-n
a  = Suku pertama = U1
b  = beda

Contoh soal:

1.  Diketahui barisan 6, 9, 12,..
Tentukan:  a. Beda
b. Suku ke 50
Jawab:
a.   b = Un -Un-1 =9-6 = 3
b.   S50 = a+(n-1)b
= 6+(50-1) 3
= 6+(49) 3
= 153
Jadi, suku ke-50 adalah 153.

2.   Diketahui barisan aritmatika dengan U = 2 dan U = 14.

Tentukan:  a. Nilai suku pertama dan bedanya      b. Suku ke-25
Deret aritmatika
Bentuk umum:
U1,u2,u3……un
Rumus:
Jumlah n suku pertama:
Sn = n/2 (a + Un ) atau Sn = n/2 {2a + (n - 1)b atau U= Sn - Sn - 1
Contoh soal:
Hitunglah jumlah 50 suku pertama dari deret 2 + 4 + 6 + 8 + …….
Jawab:
2 + 4 + 6 + 8 + …… U50
a = 2, b = 2, n = 50
Sn = n/2 { 2a + (n - 1)b}
S50 = 50/2 {2(2) + (50 - 1)2}
= 25 {4 + (49)2}
= 25 {4 + 98}
= 25 (102)
= 2550

2.   Barisan Geometri

Barisan bilangan U1,U2,U3,…… Un disebut dengan barisan geometri, apabila punya yang namanya rasio (r).
r = U2/U1 = U3/U2 = U4/U= Un/U­n-1
Contoh soal:
  1. Tentukan rasio ke 8 dari barisan 2,4,8,16,…
Jawab:
a  = 2
r  = 4/2
= 2
Un = arn-1
U10 = 2 . 210-1
= 2 . 29
= 2 . 512
= 1024

Deret geometri

Bentuk umum
U1 + U2 + U3 +…… + Un
a + ar + ar2 +…….. + arn-1
Rumus jumlah n suku deret geometri:
S= a (1 - rn)/1 - r          jika r < 1
Dan
Sn = a (rn - 1)/r - 1         jika r > 1

Contoh soal:
Hitunglah jumlah 8 suku dari deret 2 + 4 + 8 +…..
Jawab:
2 + 4 + 8 +….
a = 2
r = 2 berarti harus memakai yang r > 1
maka:
Sn = a (rn - 1)/r-1
S= 2 ( 28 - 1)/ 2-1
= 2 (256 - 1)/2-1
= 2 (255)
= 510

Minggu, 18 Desember 2011

Teori Persamaan Kuadrat



Bentuk Umum :








Tujuan belajar Persamaan Kuadrat (PK) :
Mencari pembuat nol / akar-akar nya , yang biasa di notasikan dengan : 
Cara mencari Akar-akar PK :
1. Rumus ABC



    
 
    Jika D > 0 : PK mempunyai 2 akar Real berlainan / berbeda
           D = 0 : PK mempunyai 2 akar Real yang sama / kembar
           D  0 : PK mempunyai akar Real
           D < 0 : PK mempunyai akar-akar yang tak Real / Imaginer / Khayal
2. Melengkapi kuadrat sempurna
3. Pemfaktoran

Minggu, 11 Desember 2011

PERPANGKATAN DAN AKAR BILANGAN



Perpangkatan

Perpangkatan bilangan adalah perkalian berulang atau berganda bilangan dengan faktor-faktor bilangan yang sama. Bentuk perpangkatan adalah sebagai berikut..

a x a x ….x a = aⁿ

n faktor

Bentuk umumnya adalah aⁿ, di mana a disebut bilangan pokok atau bilangan dasar, sedangkan n disebut pangkat atau eksponen.

Contoh :

• 2³ (dibaca dua pangkat tiga) = 2 x 2 x 2 =8

• 5² (dibaca lima pangkat dua0 = 5x 5 = 25

Perpangkatan bilangan sangat berguna untuk meringkas bentuk perkalian berulang dalam jumlah besar.

Selanjutnya kita akan mempelajari babarapa sifat yang berlaku dalam perpangkatan.

Terdapat 6 sifat operasi perpanga\katan yaitu :

(a x b)ⁿ = aⁿ x bⁿ
am x aⁿ = am+n
am : aⁿ = am-n
(a : b)ⁿ = aⁿ : bⁿ
(a)ⁿ = amxn
aⁿ = dengan a 0

Bukti kebenaran dari sifat-sifat di atas dapat Anda lakukan setalah Anda mempelajari unit 7 mengenai penalaran induktif dan deduktif. Sementara ini Anda dapat menggunakan sifat-sifat tersebut untuk menyelesaikan soal-saol mengenai perpangkatan.




Pada perpangkatan, bilangan pokok dapat berupa bilangan bulat maupun pecahan, demikian juga untuk pangkat atau eksponen. Pangkat juga dapat berupa bilangan nol. Dalam perpangkatan, kedua komponen (bilangan pokok dan pangkat) sama dengan pentingnya. Namun demikian, perubahan hasil perpangkatan terutama ditentukan oleh nilai pangkatnya. Oleh karena itu pembedaan nilai pangkat akan dibahas secara khusus.

Pangkat dapat barupa bilangan nol, bilangan bulat (positif dan negatif), bilangan pecahan (rasional) dan bilangan irrasional. Bilangan irrasional tidak dibahas pada bahan ajar ini. Untuk lebih jelasnya dapat dilihat skema berikut ini.

Pangkat Bilangan

C. Bulat Posetif

1. Bilangan Bulat

a. Bulat Negatif

b. Bulat Nol

2. Bilangan Pecahan

b. Pecahan Posetif

a. Pecahan Negatif

Bagaimana jika suatu bilangan dipangkatkan dengan nol ? Sembarang bilangan bila dipangkatkan nol akan maenghasilkan nilai 1, tidak perduli apakah bilangan pokoknya merupakan bilangan positif atau negative.

Contoh:

5° = 1

Seperti yang telah dikemukakan sebelumnya perpangkatan bilangan adalah bentuk perkalian berulang atau berganda. Berdasarkan skema pangkat bilangan, pangkat dapat berupa bilangan bulat positif atau negatif. Pangkat bilangan bulat positif merupakan bentuk parkalian perkalian berulang yang sebenarnya. Nilai pangkat/ekponen menunjukan banyak perkalian berulang (factor) nilai itu sendiri.

Sembarang bilangan bila dipangkatkan 1 akan menghasilkan bilangan itu sendiri.

Contoh :

21 = 2

Baik bilangan pokok yang merupakan bilangan bulat maupun pecahan, bila dipangkatkan dengan 1 maka hasil perpangkatannya bernilai tetap sama yaitu bilangan itu sendiri.

Sembarang bilangan bila dipangkatkan 2 akan menghasilkan perkalian berulang 2 kali bilangan itu sendiri. Contoh :

32 = 3 x 3 = 9

102 = 10 x 10 = 100


Sembarang bilangan bila dipangkatkan 3 akan menghasilkan perkalian berulang 3 kali bilangan itu sendiri.

Contoh :

43 = 4 x 4 x 4 = 64

103 = 10 x 10 x 10 = 1000

CARA MENGHITUNG AKAR KUADRAT



berbagai macam cara menghitung akar kuadrat.
1. Cara coba-coba. Ini adalah cara paling umum untuk menyelesaikan hitungan akar kuadrat. Cara ini sangat cocok bagi anak-anak, kita, yang telah lancar menghitung kuadrat atau perkalian.
Misal kita akan menghitung akar (kuadrat) dari 64.
Maka kita coba 5×5 = 25 (terlalu kecil).
Coba 9×9 = 81 (terlalu besar).
Coba 7×7 = 49 (terlalu kecil).
Coba 8×8 = 64 (betul).
Jadi kita peroleh akar 64 adalah 8.
2. Cara faktorisasi. Cara ini cukup menarik dan taktis. Misal, berpakah akar dari 64?
Maka 64 = 2×32 = 2x2x16 = 4×16
Maka
akar 64 = akar 4 x akar 16
= 2 x 4
= 8 (Selesai).
Cara faktorisasi ini sangat berguna sampai pelajaran matematika tingkat tinggi. Ketika duduk di bangku SMA, kita sering menggunakan cara faktorisasi. Ketika kuliah kalkulus, kita juga sering menggunakan cara faktorisasi.
Misal, berapa akar dari 72?
Maka
72 = 9×8 = 9x4x2
Jadi akar 72 = 3x2x akar 2
= 6akar2 = 6√2.
3. Cara pendekatan. Cara ini adalah variasi dan lanjutan dari cara coba-coba. Setelah berlatih beberapa kali, kita akan sangat mahir dengan cara ini. Cara pendekatan ini sangat dahsyat untuk menghitung akar yang nilainya cukup besar.
Misal, berapakah akar dari 1681?
Pendekatan paling masuk akal adalah 40×40 = 1600.
Karena satuan dari 1681 adalah 1 maka satuan dari akarnya tentu 1 atau 9. Dalam hal ini kita memilh 1. (Mengapa?).
Jadi kita peroleh jawaban 40+1 = 41
Misal, berapakah akar dari 3364?
Pendekatan paling masuk akal adalah 50×50 = 2500.
(sedangkan 60×60 = 3600, terlalu besar).
Karena satuan dari 3364 adalah 4 maka satuan dari akarnya adalah 2 atau 8. Dalam hal ini kita memilih 8. (Mengapa?)
Jadi kita peroleh jawaban 50+8 = 58.

Rumus Bangun Ruang – Matematika




Rumus Kubus
- Volume : Sisi pertama dikali sisi kedua dikali sisi ketiga (S pangkat 3)
Q
Rumus Balok
- Volume : Panjang dikali lebar dikali tinggi (p x l x t)

Rumus Bola
- Volume : phi dikali jari-jari dikali tinggi pangkat tiga kali 4/3 (4/3 x phi x r x t x t x t)
- Luas : phi dikali jari-jari kuadrat dikali empat (4 x phi x r x r)
BALOKBOLA
Rumus Limas Segi Empat
- Volume : Panjang dikali lebar dikali tinggi dibagi tiga (p x l x t x 1/3)
- Luas : ((p + l) t) + (p x l)
LIMAS
Rumus Tabung
- Volume : phi dikali jari-jari dikali jari-jari dikali tinggi (phi x r2 x t)
- Luas : (phi x r x 2) x (t x r)
TABUNG
Rumus Kerucut
- Volume : phi dikali jari-jari dikali jari-jari dikali tinggi dibagi tiga (phi x r2 x t x 1/3)
- Luas : (phi x r) x (S x r)
- S : Sisi miring kerucut dari alas ke puncak (bukan tingi)
KERUCUT
Rumus Prisma Segitiga Siku-siku
- Volume : alas segitiga kali tinggi segitiga kali tinggi prisma bagi dua (as x ts x tp x
PRISMA